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Abstract 

This paper presents the use of a scanning laser vibrometer and a signal decomposition method to 
characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser 
vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic 
excitation. Velocity profiles at different times are constructed using the measured velocities, and then each 
velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting 
method. From the variations of the obtained modal \ielocities with time we search for possible non-linear 
phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. 
third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass 
centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the 
planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the 
multiple shooting method. Experimental results show the existence of 1 :3 and 1 :2:3 external and internal 
resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- 
modulation among several modes. Moreover, the existence of non-linear normal modes is found to be 
questionable. 

f f, 2002 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Because the cargo space of a launch vehicle is always limited, large space structures (e.g., solar 
collectors, dish antennas. radiators, sun shields, habitats, radio-frequency structures, optical 
communication systems, radars, lightweight radiometers, and telescopes) must be designed to be 
stowed during launch and deployed once on orbit. Moreover, because the launch expenditure of a 
NASA space mission always constitutes a significant fraction of the total cost, inexpensive launch 
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vehicles with small payload masses are always desirable. Hence, instead of using previous electro- 
mechanical types of deploying systems, recent efforts of NASA concentrate on the use of highly 
flexible ultra-lightweight deployable/inflatable structures for space applications [ 11. These recent 
developments have stimulated extensive research into the mechanics and dynamics of highly 
flexible structures. 

Highly flexible deployable/inflatable structures are made of thin-walled structures and 
membranes. Because these structures usually have small material damping and there is no 
environmental damping in space, maneuver often leads to destructive large vibrations, which 
affect the operational accuracy, increase the operation expense, and reduce the life of structures. 
Because highly flexible structures can undergo large displacements and rotations without 
exceeding their elastic limits, geometrically exact modelling and accurate computational methods 
are needed in order to understand the behaviors of such structures, to evaluate their actual load 
carrying capacity, and to determine an efficient control method [ 1-31, 

Non-linear models are required in analyzing actual flexible structures, such as helicopter rotor 
blades, wind turbine blades, and most space and aerospace structures. A linear static model of a 
structure can predict the onset of static bifurcation (buckling) but cannot predict post-buckling 
displacements. In a pseudo-non-linear model, the static behavior is described by a non-linear 
model, but the dynamic behavior is described by a linear model. The non-linear static model is 
used to predict the static equilibrium configuration after buckling, and the linear dynamic model 
describes vibrations around the static equilibrium position and is used to perform dynamic 
stability analysis and to predict the onset of dynamic bifurcation. However, a linear dynamic 
model cannot predict limit cycles or chaotic attractors, which occur after dynamic bifurcation. 
Hence, a geometrically exact (or fully non-linear) structural model that can describe large static 
and dynamic deformations is required for the study of highly flexible structures. 

Software developed for the design and analysis of highly flexible structures needs to be 
experimentally verified for its applicability and accuracy. Geometrically exact modelling, analysis, 
and experimental verification of large static deformations of highly flexible structures have been 
demonstrated by many researchers [4-61. However, obtaining accurate large dynamic deforma- 
tions of highly flexible structures is still a very challenging task, and experimental verification of 
large dynamic deformations is even more difficult. To solve non-linear dynamic problems of 
actual structures without using the finite-element method is almost impossible. Although the 
finite-element method is still the most popular method for analyzing complex structures because 
of its systematic approach of treating different structural elements and system boundaries, finite- 
element solutions are always approximate answers because of the use of polynomial shape 
functions and variational formulations. Moreover, using different stress and strain measures, 
different methods of meshing the geometric domain, different iteration methods in solving non- 
linear algebra equations, and even different methods of tracing equilibrium paths can result in 
different solution errors in finite-element analyses. Hence, experimental verification of non-linear 
dynamic responses from finite element analyses is important in order to assure the performance of 
a non-linear finite-element code. Unfortunately, large-amplitude vibration testing itself is very 
challenging. Because of significant mass and stiffness, wiring, conductivity requirement, and/or 
limited measurement range, conventional sensors (such as accelerometers, strain gauges, and 
displacement sensors using eddy current) are not suitable for measuring large dynamic responses 
of highly flexible structures. 

1 

. 
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In this work a scanning laser vibrometer is used to  provide non-contact measurements of 
velocities of many points on a cantilevered beam, and a signal decomposition method is developed 
to process these velocities to reveal non-linear characteristics, such as superharmonic and 
subharmonic external resonances, internal resonances, amplitude- and phase-modulated motions, 
and energy transfer from high- to low-frequency modes. Moreover, large-amplitude operational 
deflection shapes are obtained by solving geometrically exact equations of motion using the 
multiple shooting method, and the concept of non-linear normal modes is examined. 

2. Experimental set-up 

I Fig. 1 shows the set-up of a Polytec PSV-200 scanning laser vibrometer for measuring velocities 
of many equally spaced points on a beam, where the Ling Dynamics LDS V408 shaker has a 
maximum output force of 196 N and can provide 5-9000 Hz excitations. The PSV-200 scanning 
laser vibrometer can provide non-contact (measuring velocities of a dynamic system by checking 
the frequency shift of a back-scattered laser beam), remote (up to 30 m away), large-area scanning 
(up to 40" x 40'). dense (up to 512 x 512 points), high-frequency bandwidth (0.2 Hz-20 MHz), 
and accurate (a velocity resolution of 0.1 pm/s) measurements. The vibrometer system comprises 
an OFV-055 optical scan head. an OFV-3001-S controller, a video control box, and a Pentium-I1 
400 MHz computer system. The LDS PA5OOL power amplifier magnifies the AC voltage from the 

Fig. 1. The experimental set-up and the two co-ordinate systems used in the modelling. 
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DSC4-CE shaker controller and sends it to the shaker to excite the structure. The PCB J353B03 
shear ICP accelerometer feeds back the base acceleration to the DSC4-CE, and the DSC4-CE 
modifies the AC voltage sent to the LDS PA50OL to keep the base motion harmonic. The 
scanning head launches a probe beam to the structure’s surface and collects the back-scattered 
light signal as well. The OFV-300 1 -S vibrometer controller provides power for the scanning head, 
controls the rotation of the two mirrors in the OFV-055 scan head and the scanning of the laser 
beam, and processes the interferometry created by the back-scattered laser beam and the reference 
laser beam in the OFV-303 sensor head. The output voltage from the DSC4-CE is also taken as 
the input signal to the structure by Channel A of the OFV-3001-S vibrometer controller and is 
also used as the signal for triggering data acquisition by the computer. The OFV-3001-S controller 
includes two independently programmable low-pass filters for filtering the signals from the DSC4- 
CE and the OFV-303 sensor head, respectively. After filtering, these two signals are sent from 
Channels A and B of the vibrometer controller to the 400 MHz computer system, which is 
operated by Windows NT and processes the measured data. The PSV software in the computer 
system controls the entire measuring system, which includes the high-speed FFT processor, 
analog-to-digital converters, laser focus and position, vibrometer electronics, and a live video 
system. The video control box controls the swiveling and tilting of the OFV-055 scan head and the 
focusing of the video camera in the OFV-055 scan head. A standardized composite video signal 
from the camera is passed via a BNC connection on the video control box to the video input of the 
computer system. The exact area to be scanned can be drawn with reference to the video image of 
the structure on the monitor. 

When using the laser vibrometer to detect the surface velocity of a structure, bright spots in the 
speckle pattern of the laser light back-scattered from the surface will randomly fall on the optical 
sensor. This inherent fluctuation in the light intensity at the optical sensor is called speckle noise, 
and it depends on the ratio of the laser wavelength to the structural surface roughness. The PSV- 
200 laser vibrometer employs an analog phase lock loop (PLL) circuit to demodulate the FM- 
signal. It is often that the speckle noise causes the PLL to lose its locking state so as to yield noise 
signals with large amplitudes. Speckle noise amplitudes from 2 to 10 times the expected velocity 
amplitudes may occur and the input to the A/D converter will become overloaded. Speckle noise 
occurs more often when the surface velocity is of low amplitude, the laser beam is improperly 
focused, the surface is of poor reflective nature, or the laser beam is off the structure’s normal 
direction by a large angle. I t  will strongly limit the system performance in poor signal-to-noise 
ratio, short stand-off distance, and high velocity signals. To reduce spectral noise and reflection 
when the laser beam was not perpendicular to the structure due to dynamic deflection, a thin layer 
of retro-reflective tape was adhered to the beam shown in Fig. 1. 

In the experiments we first performed an “FFT” acquisition to obtain frequency response 
functions (FRFs) using a small periodic chirp base-excitation, and then we obtained linear natural 
frequencies from the averaged FRF. After that we performed single-frequency large-amplitude 
base-excitations and examined non-linear vibration characteristics of the beam. 

Fig. 2 shows that the laser beam does not really shoot at  the same point because of the axial 
displacement u (due to the shortening effect) and the non-zero shooting angle 8 of the laser beam. 
To reduce this effect we set the OFV-055 scan head 2.4 m away from the beam to make 8<6” .  
Moreover, because this effect is especially significant if it is a large-amplitude first-mode vibration, 
and because the beam’s first natural frequency (about 1.5 Hz) is much lower than the minimum 
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ON-055 
scan head 

Fig. 2. The relation between the laser beam and measurement points. 

frequency limit ( 5  Hz) of the shaker, large-amplitude first-mode vibrations are not examined in 
this study. For all the cases studied, the influence of u is shown to be negligible by experimental 
results presented later in Section 5. 

3. Governing equations 

3. I .  Lurge-amplitude ribrution 

To describe large deformations of a beam, two co-ordinate systems are needed; the system xyz 
shown in Fig. 1 describes the undeformed system configuration and the system t qc  describes the 
deformed system configuration. The system xyz is an inertial orthogonal rectilinear co-ordinate 
system in which the axis s is the reference line formed by connecting the reference points of all 
cross-sections of the undeformed beam; and the system is a local orthogonal curvilinear co- 
ordinate system in which the axis t represents the deformed reference line and the axes r and 5 
represent the deformed configurations of the axes y and z in the absence of out-of-plane warpings. 
The unit vectors along the axes X, :, 5, and i will be denoted by i,, ir, i l ,  and i 3 ,  respectively. u 
and i v  represent the displacement components of the reference point on the observed cross-section 
with respect to  the axes x and z, respectively. 

The fully non-linear equations governing the two-dimensional motion of a highly flexible beam 
can be derived by using Jaumann stress and strain measures and an exact co-ordinate 
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transformation to be [7] 

F; = - p2F3 - Tllql - T13q3 + TIImii + T13inii’, 
F; =@I + TI391 - Tllq3 - T13mii + Tllmib, 

Mi + e)F3, Ti,  = (p2 - k2)T13, Ti3 = -(p2 - kI)TII, 
u’= - 1 - wk? + (1 + e)TlI, w’ = uk2 + (1  + e)TI3, (1) 

where ( )’ a( )/ax, ( ’)  = a( ) /a t ,  F1 is the internal force along <, F3 is the internal force along 
5, MI is the internal bending moment along y, il = Tlli, + (= (1  + u’ + wk*)/(l + e)i.y + 
(11,’ - uk?)/(l + e$), Tf, + Tf3 = 1, in is the mass per unit length, e is the axial strain on and 
along the { axis, p2 is the normalized bending curvature along y, q1 and q 3  are the distributed 
external loads along x and 2, respectively, and k2 is the undeformed bending curvature along y .  k2 
can be used to describe the geometry of an initially crooked beam. For an initially straight beam 
(such as the beam studied in this paper), k2 = 0. Moreover, the constitutive equations are 

M2 F1 p 2 = E + k 2 ,  e = -  EA’ 
where I is the area moment of inertia with respect to the y axis, E is Young’s modulus, and A is 
the cross-sectional area. 

Because the base (i.e., the fixture) in Fig. 1 is confined to move horizontally, we have 

I t f X ,  t )  = b(t) + a(s, t ) ,  ( 3 )  

where b(t)  denotes the base motion and 13 is the relative displacement of the beam with respect to 
the base. If it ,(= b(t) + it(.v, t ) )  is assumed to be harmonic when h(t)  is harmonic and mii is 
assumed to be negligible, one can transform the non-linear dynamic problem in Eq. (1) into a 
quasi-static one by using 

where y is the gravity and Q is the excitation frequency. The problem is equivalent to a fixed-free 
vertical beam being loaded with a constant, distributed transverse load mbQ2, a parametric load 
mtQ2, and the structural weight. The boundary conditions are 

( 5 )  

where L is the beam length. Eqs. (l),  (4), and ( 5 )  can be solved for it using the multiple shooting 
method [5,8].  The so-obtained h + 13 is called the operational deflection shape at the specific 
excitation frequency, and it can be used to examine the concept of non-linear normal modes. If the 
17 is assumed to be the shape of a non-linear normal mode, the corresponding velocity profile is 
Q(h + it). 

T I ,  = 1, TI3 = u = W = 0 at x = 0; F I  = F3 = A 4 2  = 0 at x = L, 

3.2. Wecikly non-linear vibration 

If the vibration is weakly non-linear and the beam is assumed to be inextensible (i.e., e = O), one 
can perform Taylor’s expansion to expand the longitudinal displacement u and the bending 
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curvature p .  up to cubic non-linearity as [9] 

p2 = I P ( 1  + ;It.”). - 

And, the equation of motion is given by [9] 

mi6 = -EZ(d‘‘ + u ~ ~ U ” ~  + w’~’w’~)’ + (w’ mii ds)’ + [w’’’(s - L)  + d]mg. 

(7) 

Substituting ib = -Q2(b + 17) and itJ = 17’ from Eq. (4) into Eq. (8), neglecting ii, and using the 
boundary conditions 

(9) IT= IT’ = 0 at .Y = 0, i t *  = II - 0 at s = L, 

one can use the multiple shooting method to solve Eqs. (8) and (9) for operational deflection 
shapes. One can also solve Eqs. (8) and (9) for asymptotic solutions using perturbation methods 
[lo]. However. a linear mode is included in a perturbation solution only if its natural frequency o 
is commensurable with the excitation frequency Q (i.e., external resonances), or o is 
commensurable with the natural frequency of an excited mode (i.e., internal resonances). Because 
there are only cubic non-linearities in Eq. (8), first-order perturbation solutions of Eq. (8) can only 
predict 1 : l  and 1:3 internal and external resonances. Moreover, the scaling parameter E used in a 
perturbation method for ordering is usually a mystery, and i t  is difficult to quantify the applicable 
parameter range of the perturbation solution obtained under a specific scaling. We will examine 
the applicability of Eq. (8) to large-amplitude analyses. 

-‘I -.fff - 

4. Response to harmonic excitations 

We consider the upwardly cantilevered beam shown in Fig. 1 ,  which is a 479.0 x 50.8 x 
0.45 nim titanium alloy beam having a mass density 4430 kg/m3, Young’s modulus 127 GPa, and 
the Poisson ratio 0.36. Moreover. the effective moving mass (including the armature and the 
fixture base) of the shaker is given by the manufacturer to be 200 g, and the fixture weighs 768 g. 

mib + E W  = 0. (10) 

The free undamped linear vibration of a beam is governed by 

Substituting Eq. (3) into Eq. (10) yields 

mi? + EZLP = -mb(t). 

If the excitation force on the movable part (including the effective moving mass of the shaker and 
the fixture) of the excitation system is assumed to be a harmonic force FO sin Qt, the equation of 
motion of the movable part is 

(12) 

where the mass M ( =  0.2 + 0.768 = 0.968 Kg) is the mass of the movable part. Hence, it follows 
from Eqs. ( 1  1)  and (12) that the equation governing the motion of the beam and the movable part 

FO sin Qt - EIW”’(O, t )  = Ml;(t), 
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is given by 

(13) 
rn 
M 

rni? + ciii + EZW“ = - [ ~ h v ” / ’ ( O ,  t )  - Fo sin at], 
where we added the damping term c ‘ i i ~  and c‘ is the damping coefficient. Because Eq. (13) is linear 
and the excitation function is harmonic, the responses w(x, t )  and iT(x, t )  should be also harmonic. 
If there are other harmonic components, they must be due to non-linearities. 

One can see from Eq. (13) that, if M is too large, the maximum available force amplitude (i.e., 
Forn/M) becomes too small for exciting a large structure. On the other hand, if a small structure 
(and hence a small EZiv”’(0, r ) )  is to be tested, one should choose a large M and hence a large Fo 
can be used to make the EZitY”’(0, t )  relatively negligible. This is the reason we use a 768-g fixture in 
this study of a small flexible beam. If  the shaker controller DSC4-CE is used to monitor the base 
motion and to accordingly change the input voltage to the shaker to make h(t)  = Bo sin at, then 
we have 

miis + c‘\% + E Z ~ V ’ ~  = rnQ2Bo sin Q r .  (14) 

The free undamped linear mode shapes + r ( x )  of a cantilevered beam can be obtained from 
Eq. ( I O )  to be 

cos PiL + cosh P,L 
sin PiL + sinh PiL 

4 ; ( ~ )  = cash - COS P;x + . (sin \Jix - sinh pix). 

For the first four modes, p,L = 1.875104, 4.694091, 7.854757, and 10.99554. Fig. 3 shows the 
first four mode shapes. We note that the maximum displacement of each mode is 2 at  x = L. The 
instant mass center of each mode can be calculated to be at (x,z) = 
(L/2,0.7830), (L/2,0.4339), (L/2,0.2544), and (L/2,0.18 19). We note that the mass center gets 
close to the equilibrium position (z = 0) when the mode number increases. 

We note that, because of the lumped mass M of the movable part and the distributed structural 
weight nzg,  the actual natural frequencies and mode shapes may deviate from the ones shown in 
Eq. (15). To include the actual influences of the movable mass and the structural weight we add 

6- 

Fig. 

-0.5 ~ 

-20 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

x (m) 

3. The first four linear mode shapes and their instantaneous mass centers. 

.5 



P.F. Pai, S.-Y. Lee I Joimial of Sound arid Vibration 264 (2003) 657-687 665 

the influence of structural weight to Eq. (13) to obtain that [9] 

From the linear mode shapes and their instantaneous mass centers shown in Fig. 3, we know that 
the gravity will slow down the restoration of bending if the beam is upward (Fig. l), and the 
gravity will accelerate the restoration of bending if the beam is downward. Hence, the natural 
frequencies of the upward beam are expected to be less than those of the downward beam. 
Because the instantaneous mass center of a high-frequency mode is close to  the equilibrium 
position, the influence of gravity on its natural frequency is expected to be small. If the mode 
shapes are assumed to be the same as those in Eq. (1  5), one can substitute the mode shapes in 
Eq. ( 1  5) into Eq. (16) (without Fo sin QZ and &I) and use the Galerkin method to estimate the 
natural frequencies 0; as 

( 1  7) ’ I?* M J% 4: d s  Jt 4: dx 

It can be shown that Jt 4: d s  = L. If M-+ x and the gravity is neglected, the first four mr(= 
flfdm) are obtained to be 1.6964, 10.6310. 29.7671, and 58.3316 Hz. If only the influence of 
M(= 0.968 kg) is considered, u, are obtained to be 1.7222, 10.6810,29.8153, and 58.3800 Hz. One 
can see that the M increases the natural frequencies by 1.5%, OS%, 0.2%, and 0.1 YO, respectively. 
Hence, the influence of the moving part on the vibration characteristics is expected to be small. If 
only the gravity is considered, or of the upward beam are obtained to be 1.4365, 10.4181,29.5491, 
and 58.1026 Hz, and o, of the downward beam are obtained to be 1.9214, 10.8397,29.9835, and 
58.5598 Hz. One can see that the gravity changes the natural frequencies of the downward 
(upward) beam by 13.30/0 (-15.3%), 2.5% (-2.0%1), 0.7% (-0.7%,), and 0.4% (-0.4%), respec- 
tively. In other words, the gravity will increase the first four natural frequencies from the upward 
beam to the downward beam by 28.6O/b, 4.5%. 1.4Oi0, and 0.8%, respectively. Hence, the influence 
of gravity is more significant than that of the moving part on the kibration characteristics of the 
beam. Moreover. we note that both the moving mass and gravity do  not have significant 
influences on high-frequency modes. 

EZ EI 4:(0) Jt 4r d s  J:[~:(.X - L )  + 4’14 dx 
(01 = p--- - B  

5. Experimental and numerical results 

We used a 0-200 Hz periodic chirp signal for excitation and the PSV-200 scanning laser 
vibrometer to obtain the frequency response functions (FRFs) of 51 equally spaced points on the 
beam shown in Fig. 1. The measurement time was about 50 min. Because 6400 FFT lines @e., 
only 2001‘/6400 Hz (i = 1,2, . . . ,6400) harmonics are included in the chirp signal, and the F R F  
will be calculated only at these frequencies) were used in the measurement, the frequency 
resolution is 0.03125 (= 200/6400) Hz. Fig. 4 shows the averaged F R F  of the 51 FRFs of the 
upward beam. We note that the peaks in Fig. 4 are sharp and do not show the influence of 
damping because the linear scale is used in order to show the first peak. The first six peaks in 
Fig. 4 correspond to the first six natural frequencies shown in Table 1. From the averaged FRF of 
the 51 FRFs of the downward beam, the first six natural frequencies were also obtained and 
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Fig. 4. The averaged frequency response function and the first six natural frequencies. 

Table 1 
Natural frequencies from the averaged FRF obtained using a periodic chirp excitation 

Upward 1.406 10.438 29.719 
(013/3 + 0.532) 
( ~ 4 / 6  + 0.725) 

(3012 - 1.595) 
((,1,/2 + 0.579) 

Downward 1.875 10.875 30.156 
(03/3 + 0.823) 
( ~ 4 / 6  + 1.083) 

( 3 ~ 2  - 2.469) 
( ~ 4 / 2  + 0.781) 

Increase 33.36 4.19 
W O )  

1.47 

58.281 97.125 145.438 
(6012 - 4.347) 
( 2 ~ 0 3  ~ 1.157) 

58.750 97.469 145.875 
(6(!12 - 6.500) 
(2013 - 1.562) 

0.80 0.35 0.30 

shown in Table 1. It is obvious that, when the beam is put downward, the gravitational load on 
the beam makes the beam stiffer and increases natural frequencies. We note that the experimental 
percentage increases of the first four natural frequencies from the upward beam to the downward 
beam are very close to the numerical predictions (28.6%, 4.5%, 1.4%, and 0.8%) obtained using 
Eq. (17). However, gravity does not have significant influences on natural frequencies of higher 
modes. One can see that the second, third, and fourth natural frequencies are close to 10, 30, and 
60 Hz, respectively. Hence, cubic and quadratic non-linearities may cause 1:3 and/or 1:2 internal 
resonances (i.e., 304 =.o, and/or 2wi M q) among these three modes [ 101. 

Then we performed time-domain acquisitions with the beam being excited at a chosen 
frequency, and 1024 velocity samples at  each of the 51 points on the beam and one point on the 
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fixture base were recorded using a sampling frequency of 5 12 Hz. If the beam vibration is periodic 
and has a period T and the recording at each location is controlled by triggering to begin at nT (n  
is an integer) after the beginning time of the previous recording, the velocity profile at t = t h  can 
be obtained by connecting the measured velocities of the 51 locations at r h .  To separate the 
contribution of each linear mode from the velocity profile at t = t k  we assume 

I 

M-x, t k )  = &f) + 1 a , ( t k ) $ , ( s ) ,  (18) 

where b is the experimental base velocity and a, denotes the modal velocity of the ith linear mode. 
To obtain the values of a l ( t h )  by least-squares fitting we define a spatial-domain error function Ex 
as 

r = l  

51 

E [li7(-y171, t h )  - G ’ ( - ~ I , J ,  t k ) ] ? ,  (19) 
171= 1 

where tt. are experimental data. The equations for determining ul(tk) are given by 

The standard deviation SD of the fitted velocity profile at each instant can be calculated as 
r=- 

where N denotes the number of measurement points. which is 51 in this study. Because the 
scanning laser vibrometer uses the known excitation frequency and a trigger to determine the 
beginning time for recording at each location on the beam, the recorded velocities of the 52 
locations (including the point on the fixture) will be in phase if the velocities contain only 
harmonics of the excitation frequency R and its integral multiples (Le.. nR). If the motion contains 
non-periodic components or periodic components with frequencies different from nQ, the 
obtained velocity profiles may not be the actual ones because artificial phase differences may be 
introduced by the data acquisition. However. one can check the velocities of the point at x = xln 
to see whether its curve-fitted velocities ii*(.xHJ, r h ) ,  k = 1, ..., 1024 in Eq. (18) match with its 
experimental velocities li(stn, t k ) ,  and it can be quantified using the following time-domain error 
function Et: 

k= 1 

Fig. 5 shows the operational deflection shapes captured using a SONY DSCPl digital camera 
when the base was excited at the second, third, and fourth natural frequencies, respectively. 
Figs. 6 (aHd)  show 50 (25 light lines and then 25 dark lines) consecutive experimental velocity 
profiles of the vibration shown in Fig. 5(a), the velocity profiles curve-fitted using Eq. (18) and 
numerical velocity profiles obtained using the multiple shooting method, the modal velocity ai, 
and the fitting error, respectively, The roughness of experimental velocity profiles shown in 
Fig. 6(a) is due to spectral noise caused by the small longitudinal displacement and rotation of the 
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Fig. 5.  The operational deflection shape when the beam is subjected a harmonic base-excitation at: (a) 52 = w? = 
10.438 Hz with A,,,,,, = 0.0723 m/s, (b) Q = (03 = 29.719 Hz with h,,,,,, = 0.0884 m/s, and (c) Q = (114 = 58.281 Hz with 
b,,,,, = 0.0422 m/s. 

beam, and it is more serious when the deflection is large and hence the velocity is close to zero. 
The DSC6CE controller was set to control the base velocity amplitude to be 0.07 m/s and the 
actual amplitude was 0.0723 m/s. This 3% error is typical for all the experiments reported in this 
paper, and the controlled base motion was found to be pretty close to a harmonic curve. The 
intersection of velocity profiles within the envelope in Fig. 6(b) indicates that the motion consists 
of two or more modes. The two starred lines in Fig. 6(b) are obtained using the multiple shooting 
method [5,8] to solve Eqs. (l) ,  (4), and ( 5 ) .  Because no damping is included in Eq. (l) ,  the 
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predicted amplitude is larger than the actual one. Moreover, in order to prevent the laser beam 
from missing the beam tip (see Point c in Fig. 2), the last measurement point was set a little bit 
away from the beam tip and hence the theoretical node does not coincide with the experimental 
one. We also used the multiple shooting method to solve Eqs. (8) and (9) for theoretical velocity 
profiles, and the solutions are larger than those theoretical ones in Fig. 6(b) by 1.2% or less. In 
other words, although the amplitude is rather large (see Fig. 5(a)), including non-linearities up to 
cubic terms is accurate enough for this study. However, because Eq. (8) is not geometrically exact 
and its solution converges slowly in the multiple shooting process, all the theoretical velocity 
profiles presented were obtained using Eqs. (1H5). Fig. 6(c) shows that the velocity profiles 
mainly consist of the first and second linear modes and the contributions of third and fourth linear 
modes are negligible. Moreover, both non-trivial modes are almost harmonic, vibrate at the 
excitation frequency, and have a constant phase difference x .  

The $;(x) shown in Eq. ( 15) are called linear normal mode shapes because they are derived from 
the linear governing Eq. (10) and because all points on the beam pass the equilibrium position 
( ~ ( x ,  t )  = 0) at the same time when the vibration is ii.(s, t )  = $,(s) sin w,t. The two starred lines 
shown in Fig. 6(b) represent a non-linear normal mode shape because it is obtained by assuming 
a(s, t )  = @(x) sin Qt in Eq. (4). If two (or more) arbitrary, linear normal modes vibrate at the 
same frequency Q with a constant phase difference x ,  they can be combined into one mode (in 
order to reduce the number of modes and computation efforts) as 

Eq. (23) shows that 5 is a constant (i.e., zero) only if x = 0" or 180'. If afO" or 180°, is a 
function of s and it is called a complex mode, Le., they cannot be combined into a normal mode. 
Because Fig. 6(c) shows that the phase difference 1 between al ( t )  and m(r) is not 0" or 180", it is a 
complex mode. Close examination of Fig. 6(a) also shows that the maximum velocity profile (Le., 
minimum deflection) between the clamped end and the node does not occur when the velocity 
profile between the node and the beam tip is maximum, and hence it is a complex mode. On the 
other hand, using the multiple shooting solution 17 obtained from Eqs. (1)-(5) to estimate the 
maximum velocity profile as Q(b + IT>) implies the assumption that B is constant and it is a normal 
mode. This is another factor that causes the difference between the theoretical and experimental 
maximum velocity profiles in Fig. 6(b). Fig. 6(d) shows that, when the velocity is zero (Le., 
maximum deflection), the maximum curve fitting error occurs because of spectral noise. In 
Fig. 6(d), W,, denotes the maximum value of $. When the velocity is the maximum or minimum, 
the error is the minimum because it has a large signal-to-noise ratio and the beam is almost flat. 

Figs. 7(aHc) show 58 (29 light lines and then 29 dark lines) consecutive experimental velocity 
profiles of the beam excited at  9.0 Hz, the curve-fitted velocity profiles, and the modal velocities a,, 
respectively. Because the vibration amplitude in Fig. 7(b) is smaller than that in Fig. 6(b), the last 
measurement point (Point c in Fig. 2) was set closer to the beam tip and hence the theoretical node 
almost coincides with the experimental one. Because the first mode also vibrates at the excitation 
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Fig. 6. 50 velocity profiles at consecutive time steps when R = 10.438 H z  and A,,,,,, = 0.0723 m/s: (a) experimental data, 
(b) curve-fitted data and numerical prediction (stars), (c) modal velocities, and (d) standard deviation (SD) of the curve- 
fitting. 
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frequency and has a 180" phase with respect to the second mode shape, it is a non-linear normal 
mode and the non-linear mode shape @(x) can be written as 

Figs. 8(a)-(c) show 44 (22 light lines and then 22 dark lines) consecutive experimental velocity 
profiles of the beam excited at 12.0 Hz, the curve-fitted velocity profiles, and the modal velocities 
ai, respectively. The theoretical velocity profiles in Figs. 7(b) and 8(b) agree well with the 
experimental ones because the excitation frequencies are away from the natural frequency and 
hence damping does not have significant influences. Because the first mode also vibrates at the 
excitation frequency and has a 0" phase with respect to the second mode, it is a non-linear normal 
mode and the non-linear mode shape @(x) can be written as 

Figs. 6(c), 7(c), and 8(c) and Eqs. (23x25)  show that, although the first two linear modes vibrate 
at the excitation frequency, the phase difference between them varies with the excitation 
frequency. Moreover, Figs. 6(b), 7(b), and 8(b) show that the theoretical non-linear mode shape 
@e., (k - &)/a) changes with the excitation frequency R. In other words, the first two linear 
modes move independently and cannot be combined into one non-linear normal mode. Hence, the 



672 P.F. Pui, S.-Y. Lee I Jourriul qf Sound untl Vibvcrtioii 264 (2003) 657-687 

"I 0.4 

4 .4  

0 0.05 0 1 0.15 0.2 025 0 3  035 0.4 045 0 5 
4.5 

(a) (m) 

0.4 

A 4 4  

0 0.05 0.1 0.15 0 2  O X  0.3 0.35 0.4 0.45 0.5 
4.5 

(b) x (m) 

( c )  tine (6) 

Fig. 7. 58 velocity profiles a t  consecutive time steps when R = 9 Hz and h,,,,,, = 0.1399 m/s: (a) experimental data, (b) 
curve-fitted data and numerical prediction (stars), and (c) modal velocities. 
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Fig. 8. 44 velocity profiles at consecutive time steps Nhen R = 12 Hz and b,,,,, = 0.1952 m/s: (a) experimental data, (b) 
curke-fitted data and numerical prediction (stars). and (c) modal velocities. 
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Fig. 9. 52 velocity profiles at consecutive time steps when R = 10 Hz and h,,,,,, = 0.1528 m/s: (a)  curve-fitted data and 
numerical prediction (stars), and (b) modal velocities. 
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Fig. 11. 20 velocity profiles a t  consecutive time steps when Q = 29 Hz and 6,,,y = 0.1371 m/s: (a) curve-fitted data and 
numerical prediction (stars), and (b) modal velocities. 

concept of using non-linear normal modes instead of linear modes to reduce the number of modes 
required in analyzing non-linear structural dynamics is questionable. 

Figs. 9(a) and (b) show 52 (26 light lines and then 26 dark lines) consecutive curve-fitted velocity 
profiles of the beam excited at 10 Hz, and the modal velocities ai. Fig. 9(b) shows that the motion 
consists of the first four modes. The first mode vibrates at I O  Hz and is due to forced vibration. 
The third mode vibrates at 30 Hz and is caused by 1:3 external and/or internal resonances due to 
cubic non-linearities. The fourth mode vibrates at 60 Hz and is caused by 1:2:3 and/or 1:6 external 
and/or internal resonances. 

Fig. 10 shows 20 (10 light lines and then 10 dark lines) consecutive curve-fitted velocity profiles 
of the beam excited at the third natural frequency 29.719 Hz (Le., Fig. 5(b)), and the modal 
velocities ai. The multiple shooting method was not able to find a converged operational 



P.F. Pai, S.- Y. Lee 1 Journal of Sound and Vibration 264 (2W3) 657-687 

I I 1 ,  

677 

0 0.05 0.1 0.15 0 2  025 0.3 0.35 0.4 0.45 0.5 

x (m) (a) 

-l t Y 
0 005 0.1 0.15 02 025 0.3 035 0.4 0.45 Ob 

(b) x e ,  

Fig. 12. 32 velocity profiles at consecutive time steps when Q = 32 Hz and 6,, = 0.3414 m/s: (a) experimental data 
(1024 profiles), (b) curve-fitted data and numerical prediction (stars), (c) modal velocities, (d) time trace of the 51st 
measurement point (at the beam tip). and (e) curve-fitted time trace of the 51st measurement point. 
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Fig. 12 (continued). 

deflection shape for this case. Fig. 10(b) shows that the motion consists of the first four modes. 
The first three modes all vibrate at the excitation frequency and are due to forced vibration. The 
fourth mode vibrates at  2013 caused by 1:2 external and/or internal resonances due to quadratic 
non-linearities. Quadratic non-linearities may be due to initial imperfection (i.e., k2 # 0) or the 
beam being not really vertical. Fig. 10(b) also shows that every modal velocity arrives at zero at 
different times and it is why the nodes in Figs. 5(b) and 10(a) are not clear. Fig. 11 shows 20 (10 
light lines and then 10 dark lines) consecutive curve-fitted velocity profiles of the beam excited at 
29 Hz, and the modal velocities a,. Fig. 1 l(b) shows that the motion consists of the first four 

L 



Fis. 1.3. The operational defection shapes captured iii trio different times \\hen Q = 32 Hz and h,,,,, = O..34l4 m h. 

modes. The first two modes vibrate at the excitation frequency and have a 180' phase with respect 
to the third mode. The fourth mode vibrates at 5s  Hz and has zero velocity when the first three 
modal velocities are close to zero. 

Fig. ]?(a) sho\vs 1034 experimental \-elocity profiles of the beam excited at 33 Hz, and 
Fig. 12(b) shows 32 consecutive curve-fitted velocity profiles. Fig. I?(c) shows that the motion 
consists of the first four modes. The first two modes \-ibrate at the escitation frequency and have a 
0' phase with respect to the third mode (i.e.. the directly excited mode). The fourth mode vibrates 
at 64 Hz and has zero velocity when the first three modal velocities are close to zero. Because the 
sampling frequency (512 Hz) is 16 (= 512/2?) times the excitation frequencq- (12 Hz) in  this case. 
there should be only 16 different \,elocitq- profiles i n  Figs. l? (a )  and ( b )  if the beam i.ibrates at 
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Fig. 14. 18 velocity profiles a t  consecutive time steps when 52 = 58.281 Hz and h,,,,, = 0.0422 m/s: (a) curve-fitted data 
and numerical prediction (stars), and (b) modal velocities. 

32n Hz. Fig. 12(b) shows exactly 16 different curve-fitted velocity profiles although 32 consecutive 
velocity profiles are plotted. However, the non-overlapping profiles shown in Fig. 12(a) and the 
large fitting error (average SD/  W,,,,, = 4.5'%,, compared to 2.2% in Fig. 10 and 1.3% in Fig. 11) 
indicate that there are harmonic components different from 32n Hz. Figs. 12(d) and (e) show the 
experimental and curve-fitted time traces of the beam tip. It is apparent that the curve-fitting 
averages out the 1.406 Hz (= QI) harmonic and the time-domain error function E! (see Eq. (22)) 
of each measurement point is higher than that in Figs. 10 and 11. Fig. 13 shows that the beam 
swung back and forth at 1.406 Hz. Again Figs. 10(b), 1 I(b), and 12(c) show that linear modes 
cannot be combined into fewer non-linear normal modes and the existence of non-linear normal 
modes is questionable. 
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Figs. 14(a) and (b) show 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity 
profiles of the beam excited at the fourth natural frequency 58.281 Hz (i.e., Fig. 5(c)), and the 
modal velocities ai, respectively. Again the theoretical velocity profiles obtained using the multiple 
shooting method are much larger than the actual ones because damping is not included in Eq. (1) .  
Fig. 14(b) shows that the fourth mode dominates the motion, and the first three modes all vibrate 
at the excitation frequency and have a 90" phase with respect to the fourth mode. Figs. 15(a) and 
(b) show 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity profiles of the 
beam excited at 58 Hz, and the modal velocities a;, respectively. Fig. 15(b) shows that the fourth 
mode dominates the motion, and the first three modes all vibrate at the excitation frequency and 
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Fig. 16. 18 velocity profiles at consecutive time steps when R = 60 Hz and bf,,Lf, = 0.1256 m/s: (a) curve-fitted data and 
numerical prediction (stars). and (b) modal velocities. 



P.F. Pui. S.- Y. Lee I Journal of Sound und Vibration 264 12003) 657-687 

“I OB 

0.4 

02 
P 

t o  
41 

3 

0.4 

0.0 

0.8 

0.4 

02 
7 

t o  42 

0.4 

Odt \ 
,I 
0 0.05 0.1 0.15 02 025 0.3 0% 0.4 0.45 04 

(a) X C )  

68 3 

Fig. 7. 18 velocity profiles at consecutive time steps when Q = 60 Hz and 6,,, = 0.1395 m/s: (a) curve-fitted data ant 
numerical prediction (stars). and (b) modal velocities. 



684 P.F. Pui, S.-Y. Lee I Journul oj'Sound und Vibrution 264 (2003) 657-687 

I I I I 
e 
5 0  
N 

I I I I I I I I I I I 
-0.2 L I 1 I I 1 1 I I I 1 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
0.2 

T 
5 0  
0 

-02 
0 0 2  0.4 0.6 0.8 1 1 2  1.4 1.6 1.8 2 

. . . . ,  1 

0 0 2  0.4 0.6 0.8 1 1 2  1.4 1.6 1.8 2 

(b) ynno 

Fig. 17 (contitiued). 

have a 180" phase with respect to the fourth mode. Again Figs. 14(b) and 15(b) show that the 
concept of non-linear normal modes is questionable. 

Figs. 16(a) and (b) show 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity 
profiles of the beam excited at 60 Hz, and the modal velocities ai, respectively. Fig. 16(b) shows 
that the first mode motion consists of 60 and 1.406 Hz (= UI) harmonics, and the second, third, 
and fourth modes vibrate at 60 Hz but their amplitudes modulate at 1.406 Hz. Figs. 17(a) and (b) 
shows 18 (9 light lines and then 9 dark lines) consecutive curve-fitted velocity profiles of the beam 
excited at 60 Hz with a base excitation larger than that in Fig. 16, and the modal velocities ai, 
respectively. The three sets of velocity profiles are separated by 0.5n/ol, and they show the 
influence of the first mode. Fig. 17(b) shows that the first mode motion consists of 60 and 
1.406 Hz harmonics, the second and fourth modes vibrate at 60 Hz but their amplitudes modulate 
at 1.406 Hz, and the third mode motion consists of 60 and 30 Hz harmonics with amplitudes 
modulating at 1.406 Hz. 

When the beam is set downward, its dynamic responses are similar to those of the upward beam 
except that the resonance frequencies increase a little. Figs. 18(a) and (b) show 18 (9 light lines and 
then 9 dark lines) consecutive curve-fitted velocity profiles of the beam excited at 60 Hz, and the 
modal velocities ai, respectively. Fig. 18(b) shows that each of the four modes consists of 60 and 
1.875 Hz (= 01) harmonics. 
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The existence of the first mode vibrating at LOI in Figs. 12(d), 16(b), 17(b), and 18(b) is due to 
the so-called energy transfer from a directly excited high-frequency mode to a very low-frequency 
mode which is not directly or indirectly excited through internal or external resonances [l 11. The 
existence of 1:2 internal resonance in Figs. 9(b), 10(b), 1 l(b), 12(c), and 17(b) shows that Eq. (8) 
cannot be used to predict the dynamics of this beam because Eq. (8) cannot account for quadratic 
non-linearities due to initial imperfection. The k2 in Eq. (1) can be used to account for initial 
imperfection, and the q 3  can be used to account for part of the structural weight if the beam is not 
vertical. 

6. Concluding remarks 

We presented a method for the characterization of non-linear structural dynamics using 
structural velocities measured by a scanning laser vibrometer. Dynamics characterization of 
structures using a shaker and a scanning laser vibrometer is examined in detail, and several factors 
that may affect the characterization are discussed. Experimental results indicate that the use of 
non-linear normal modes in analyzing structural dynamics is questionable. Moreover, 
experimental results show the existence of 1 :3, 1 :2:3, 1:6, and 1:2 external/internal resonances, 
amplitude-modulated motion, and energy transfer. This method is also valid for non-linear 
dynamics characterization of two-dimensional structures. 
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